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A B S T R A C T

Assessment of maximal fat oxidation rate (MFO) during a submaximal exercise test has been employed by many
studies to investigate the differences in metabolic flexibility (MetFlex) across several populations. Nevertheless,
many incorrect assumptions and methodological limitations exist in the procedures employed by previous studies,
which might lead to misinterpretation of the reported findings. Considering the data retrieved from 19 trained
men (Age: [27 � 4] years; %Body fat: [16.4 � 4.5]%; maximal oxygen consumption: [55.8 � 5.3] mL⋅kg�1⋅min�1)
who performed a graded exercise test over a motor-driven treadmill, this opinion paper shows that MFO alone
does not perfectly capture the MetFlex in response to submaximal intensity exercise and recommend a novel index
that considers both fat oxidation and energy expenditure modifications for an accurate examination of MetFlex.
The ability of an organism to efficiently adapt nutrient oxidation in
response to energy requirements and substrate availability fluctuations is
termed metabolic flexibility (MetFlex).1 Such ability for maintaining
metabolic homeostasis is critical for disease prevention and survival.
Indeed, an impaired MetFlex is a hallmark of several chronic diseases,
including obesity and type 2 diabetes.1–3

In humans, several experimental protocols have been applied for the
assessment of MetFlex (i.e., sleep-awake, postprandial-postabsortive, and
rest-exercise transitions),1–4 although many of these experimental pro-
tocols have not been properly validated. In this regard, measuring
exercise-induced modifications in macronutrient oxidation for the
assessment of MetFlex has gained particular interest in the past decade
because both metabolic rate and substrate availability increase in several
tissues, including skeletal muscle.5,6 From all the physiological bio-
markers proposed in the literature, the measurement of maximal fat
oxidation rate (MFO) during a submaximal exercise intensity test has
received particular attention (Fig. 1a), and several studies have used
MFO to compare MetFlex across healthy individuals, patients with
obesity and patients with type 2 diabetes.7–10 The last, because of an
impaired fat oxidation capacity, is often associated with diaclyglycerol
and ceramides accumulation in skeletal muscle leading to insulin
resistance.11

Despite a large body of literature that has employed MFO for the
assessment of MetFlex, several weaknesses and incorrect assumptions
exist in the current analytical procedures that might lead to interpreta-
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tion bias regarding the association of fat oxidation capacity and meta-
bolic health. In particular, researchers propose that a higher MFO
indicates a greater MetFlex, assuming that 1) the higher the MFO, the
greater the increment in fatty acid availability from rest to exercise; 2)
the higher the MFO, the greater the fat oxidation increment from rest to
exercise, 3) the higher the MFO, the greater the fat oxidation increment
with respect to energy expenditure modifications. With regard to the first
analytical assumption, Robinson et al.12 reported that exercise-induced
modifications on free fatty acids did not correlate to MFO in trained
men, questioning the reliability of MFO for representing MetFlex. In
addition, to argue the validity of the second and third assumptions, I will
present data from 19 trained men (Age: [27 � 4] years; %Body fat: [16.4
� 4.5];%maximal oxygen consumption [ _VO2 max]: [55.8� 5.3] mL⋅kg�1⋅
min�1) collected through indirect calorimetry measurements at rest and
during a graded exercise test (initial speed of 5 km⋅h�1 and subsequent
gradual increments of þ1 km⋅h�1 each 3 min) after overnight fasting
(10–12 h). Moreover, through an analysis of exercise-induced modifi-
cations in metabolic rate and fat oxidation, I will provide further rec-
ommendations to improve MetFlex assessment, illustrating the relevance
of establishing appropriate analytical procedures to avoid equivocal
conclusions in clinical research.

In order to evaluate MetFlex, researchers would need to measure the
metabolic transition from condition “A” (rest) to condition “B” (exercise).
Nonetheless, previous studies evaluating MFO as a marker of metabolic
flexibility rarely perform resting fat oxidation and metabolic rate
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Abbreviations

EE Energy expenditure
EE/Fox Index of fat oxidation increment with regard to energy

expenditure
MetFlex Metabolic flexibility
MFO Maximal fat oxidation
_VO2 max Maximal oxygen consumption
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assessments. In this regard, a linear regression analysis of our collected
data revealed that MFO is strongly associated with the fat oxidation
increment induced by physical exercise (difference between MFO and fat
oxidation at rest) (Fig. 1b). However, based on the concept of MetFlex,
the exercise-induced modification of the fat oxidation rate need to be
interpreted in the frame of energy expenditure or fatty acid availability
modifications. Thus, we could perform a linear regression analysis by
taking into account the fat oxidation rate and energy expenditure
measured at rest and at MFO intensity (Fig. 1c), in order to obtain a new
index of MetFlex (β coefficient or Slope) which represents the magnitude
of the fat oxidation increment stimulated by an augment of 1 kJ⋅min�1 in
energy expenditure. Interestingly, the MFO shows a modest association
with the index of fat oxidation increment with regard to energy expen-
diture (Fig. 1d). Therefore, it seems that MFO alone does not perfectly
capture the MetFlex in response to exercise and future studies must
consider both fat oxidation and energy expenditure modifications for an
accurate examination of MetFlex.

To illustrate the relevance of establishing reliable analytical proced-
ures for the assessment of MetFlex, I would like to point out that several
studies have proposed a link between obesity and impaired MetFlex,
based on their observation that subjects with obesity exhibit a lower MFO
157
in comparison to normal weight individuals.8–10 Nevertheless, as dis-
cussed above, these studies equivocally assumed that a similar increment
of energy expenditure and fatty acid availability occurs in response to
exercise between lean individuals and subjects with obesity, overlooking
the fact that both energy expenditure and fatty acid availability increases
with obesity due to an elevation in free fat mass and fat mass respec-
tively.10,13 In a similar way, discrepancies in MetFlex between sexes have
been proposed in the literature based on repeated observations that MFO
is superior in women vs. men.14 However, such studies did not consider
that adipose tissue lipolysis during exercise is higher in women when
compared to men.15 Therefore, to avoid equivocal conclusions that may
lead to incorrect theoretical models, future studies evaluating the MFO
must take into account the modifications in energy expenditure and fatty
acid availability for a reliable assessment of MetFlex.
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Fig. 1. a) Macronutrient oxidation kinetics with re-
gard to exercise intensity modifications during an
exercise test, expressed as percentage of _VO2 max. b)
Association between maximal fat oxidation (MFO)
and the increment in the fat oxidation rate from
resting conditions to the exercise intensity eliciting
MFO. c) Individual modifications in fat oxidation rate
and energy expenditure (EE) from rest to exercise in-
tensity eliciting MFO. d) Association between MFO
and the index of fat oxidation increment with regard
to energy expenditure (EE/Fox [β]) obtained through
linear regression analysis.
*Macronutrient oxidation rates and metabolic rate at
rest and during exercise were measured through in-
direct calorimetry after overnight fasting (10–12 h)
and calculated with stoichiometric equations.16,17 The
exercise test was performed over a treadmill and the
MFO was obtained by plotting the fat oxidation rates
against exercise intensity. Body composition retrieved
from bioelectrical bioimpedance, physical activity
level, and medical history were screened prior to ex-
ercise testing and those participants who meet the
following inclusion criteria were selected: i) age be-
tween 18 and 40 years; (ii) fat mass index < 6 kg⋅m�2;
(iii) high physical activity level according to the In-
ternational Questionnaire of Physical Activity18; (iv)
resting heart rate < 90 beats⋅min�1; (v) blood pres-
sure � 120/80 mmHg; (vi) medical history free of
cardiovascular, metabolic or respiratory diseases that
impede physical exercise performance.
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